数列辞典

提供: chakuwiki
移動先: 案内検索

いろいろな数字の列を考える。

数学系

等差数列・等差級数・階差数列

1、3、6、10、15、21、28、36、45、55
  1. 自然数の等差級数(等差数列の和)。
    • 三角数でもある。
    • 簡単に言うと+1、+2、+3・・・と整数を足していった数。
      • 階差数列とも言う。
    • 66、78、91・・・と続く。
  2. リーグ戦の総試合数
    • 左から2者、3者、4者、5者、6者・・・によるリーグ戦。
      • ただし2者の対戦は基本的にリーグ戦とは言わない。
      • 数学の組合せで2C23C24C25C26C2と表す。
  3. 2人、3人、4人、5人・・・によるカップリングの数。
    • ただし攻めと受けを同一に数えた場合。別々にカウントした場合のカプ数は下記。
2、6、12、20、30、42、56
  1. 初項2、交差2(偶数)の等差級数。
  2. ホーム&アウェーのリーグ戦の総試合数。
    • 2者、3者、4者、5者、6者・・・によるリーグ戦。
      • ただしそれぞれ2回ずつ対戦する。
      • 数学の順列で2P23P24P25P26P2と表す。
        • もっと簡単にするとn×(n-1)と表す。
    • 72、90、110、132・・・と続く。
  3. 攻めと受けを別々に数えたときのカップリングの数。
    • 2人、3人、4人、5人、6人・・・によるカプ数。
      • それぞれ攻めと受けがある。例えばAとBのカップリングならA×BとB×Aは別々にカウント。
      • 攻めと受けを同一にカウントした場合のカプ数は上記。
1、13、25、37、49、61
  1. 2で割っても、3で割っても、4で割っても、6で割っても1余る数。
    • 12の倍数+1。12n+1。
  2. 2人組を作っても、3人組を作っても、4人組を作っても、6人組を作っても1人余る人数。
    • ぼっちにとっては悪夢の数字群。
    • さらに61は5人組でも1人余る。
  3. 73、85、97・・・と続くが1クラスの人数だと49、同一行動する1学年の人数だと97くらいが最大か。
  4. 終物語上はこの数字群をもとにしたミステリー小説
    • 物語シリーズの主人公は典型的なぼっち
0、51、102、153、204、255
  1. 16進数左から00、33、66、99、cc、ff
    • いわゆる10進数51の倍数
  2. ウェブセーフカラーの6段階のカラーコード
  3. 17~255の17の倍数で16進数11、22、33・・・ffを表せる

等比数列

nのx乗

1、4、8、9、16、25、27、32、36、49
  1. 累乗数
    • 64、81、100・・・と続く
1、4、9、16、25、36、49、64、81、100
  1. 平方数
    • 121、144、169・・・と続く。
  2. √(ルート)をつけても整数になる数。
  3. ちなみに平方数に+3、+5、+7、+9・・・と奇数を足していくと次の平方数になる。
    • 1+3=4、4+5=9、9+7=16、16+9=25
1、8、27、64、125
  1. 立方数
    • 216、343、512・・・と続く。
1、16、81、256、625
  1. 二重平方数
    • 1296、2401、4096・・・と続く。
    • 「四乗数」とも言う。
  2. √(ルート)を2つつけても整数になる数。
1、32、243、1024、3125
  1. 五乗数
    • Wikipedia日本語版に記事があるのは二重平方数(四乗数)までで、五乗数はない。
      • 英語版には七乗数まで記事がある。
1、64、729、4096、15625
  1. 六乗数
    • 平方数でもあり立方数でもある。
      • 6の倍数は2と3の倍数であるのと同じように、六乗数は平方数で立方数である。
  2. 累乗数の羅列はここまで。

xのn乗

1、2、4、8、16、32、64
  1. 2の累乗数
    • 128、256、512、1024・・・と続く
    • ウィキペディアでは2の冪と呼んでいる。
  2. トーナメントを組むとき出場者がこれらの数だと不戦勝なしで全チームが優勝までの試合数を同じにできる。
    • そのためスポーツ大会の出場者数は8、16、32が多い。
  3. 1も一応2の累乗数に含まれる。
  4. プログラマなら少なくとも最初の30個(=230=1,073,741,824)くらいの暗記が必須。
1、3、9、27、81、243
  1. 3の累乗数
    • 729、2187、6561・・・と続く。
  2. 2の累乗数、平方数、立方数と違ってほとんど使われない。
    • Wikipediaにも記事がないよう。
  3. グラハム数も3の累乗→テトレーションを発展させる形で巨大化させている。
1、5、25、125、625、3125
  1. 5の累乗数
    • 15625、78125・・・と続く。
  2. 2の累乗数、10の累乗数ほど使われないが、3の累乗数よりは馴染みがある。
  3. 1、1/2、1/4、1/8、1/16・・・(つまり2-n、2の累乗数の逆数)の小数点下数桁の数字。
    • それらは0.5nにあたるため。
1、6、36、216、1296、7776
  1. 6の累乗数
    • サイコロの計算するときによく使う
    • 数学の問題で実際に使うのはたいてい216(サイコロ3つ)まで
    • チンチロリンで使うサイコロも3つ
1、10、100、1000、10000
  1. 10の累乗数
    • まあ見ただけでわかるのであえて書く必要はないが。
    • 10n=1の「後」に0をn個並べるだけなので一番簡単。
    • 0.1=10-1、0.01=10-2、0.001=10-3のように、指数が「負の整数」も一応含まれる。
      • この場合は、1の「前」に0をn個並べることになる。
1、11、121、1331、14641
  1. 11の累乗数
    • 二項式(x+y)nの各項の係数に等しい。
      • (x+y)2=x2+2xy+y2、(x+y)3=x3+3x2y+3xy2+y3、(x+y)4=x4+4x3y+6x2y2+4xy3+y4
  2. 1を頂点にして、右上と左上の数を足していった数。
    • 113及び(x+y)3の係数は112=121→1、1+2、2+1、1→1331となる。
    • これをパスカルの三角形と言う。
    • ただし整数でパスカルの三角形が成り立つのは114=14641まで。
      • 115は繰り上がりが発生し161051となってしまう。
    • (x+y)5はx5+5x4y+10x3y2+10x2y3+5xy4+y5となりパスカルの三角形が成り立つ。
1、2、4、16、256、65536
  1. 2の2の累乗数乗
    • いわゆる22n
    • コンピューター界では様々な区切りとなる重要な数。
    • 現在利用されている最大の数は228=2256
  2. (1以外)+1でフェルマー数。
1、16、4096、65536
  1. 16の累乗数
    • 24nとも表記できる。
    • 上と同じくコンピューター界では様々な区切りとなる重要な数。
1012、1024、1036、1048、1060
  1. 千進(3桁区切り)の英語圏short scale、万進(4桁区切り)の漢字圏、百万進(6桁区切り)のLong Scaleの単位の区切りが一致する数。
    • 12は3と4と6の公倍数だから当然。
    • 漢字圏では左から兆、じょ、澗、極、那由多。
    • 英語圏short scaleでは左からTrillion、Septillion、Undecillion、Quindecillion、Novemdecillion。
    • 英語圏Long Scaleでは左からBillion、Quadrillion、Sextillion、Octillion、Decillion。

別進数

1、2、4、8、1412、2812、5412、A812、19412
  1. 12進数表記による2の累乗数
    • 36812、71412、122812、245412・・・と続く
  2. 見ての通り1の位は4と8の繰り返し
    • 214(10進数216)は31B1412、220(10進数224)は575105412、228(10進数232)は9BA46159412
    • 12進法の世界だったほうが2の累乗数を覚えるのも楽だっただろう
1、3、9、2312、6912、18312、50912
  1. 12進数表記による3の累乗数
    • 132312、396912、B48312・・・と続く
      • 10進数だったら2187、6561、19683
  2. 見ての通り1の位は3と9の繰り返し
  3. 10進法の世界ではまず使われることのない数だが、12進法の世界だったら3の累乗数もよく使われていたかも。
1、6、3012、16012、90012、460012、2300012
  1. 12進数表記による6の累乗数
    • 見ての通り62以降は1の位は0ばかり。さらにだんだん0が増えていく。
  2. 0を1つつけて2で割る(ただし12÷2は7、14÷2は8、16÷2は9、5は6に置き換える)を繰り返せばいい。
  3. 10進数の5の累乗数よりわかりやすい
    • 12進数の世界だったら多用されていただろうか?

その他の等比数列・等比級数

3、12、24、48、96
  1. 2の累乗数と2の累乗数の中間。
    • いわゆる1.5×2n=3×2n-1
      • 初項3、公比2の等比数列でもある。
  2. スポーツ大会で2の累乗数とともによく使われる出場者数。
    • 年代別ワールドカップと1994年までのFIFAワールドカップの出場国数は24。
    • 2022年または2026年以降予定されているFIFAワールドカップの出場国数は48。
    • コパアメリカの出場国数は12(南米連盟加盟国10+招待出場国2)。
    • 高校サッカー選手権の出場校数は48。
  3. 192、384、768・・・と続くがスポーツ界で96以上が使われることはほとんどない。
  4. コンピュータでは2のn乗ビット(22n)の他に中間の12・24・48ビット(23×2n)もよく使われる。
    • AESの鍵空間には192ビットも存在する。
1、3、7、15、31、63
  1. 2の累乗数-1。
    • 1からn-1番目までの累乗数の和(等比級数)でもある。
    • 127、255、511・・・と続く。
  2. 2チーム、4チーム、8チーム、16チーム・・・と不戦勝なしのトーナメント戦の総試合数。
    • トーナメントの総試合数は出場者数-1で求められる。

素数

2、3、5、7、11、13、17、19、23、29
  1. 素数
    • 31、37、41、43、47・・・と続く。
    • ちなみに1は素数ではない。
3・5、5・7、11・13、17・19、29・31、41・43、59・61、71・73
  1. 双子素数(差が2になる2つの素数)
    • 101・103、107・109、137・139・・・と続く
  2. 双子素数は無限にあるのかはまだ証明されていない
    • 最も有名な数学の未解決問題と言える
4、6、9、10、14、15、21、22、25、26
  1. 半素数(素因数分解すると2つの素数になる数)
    • 33、34、35、38、39・・・と続く
  2. 素数より数が多い
    • 14・15、21・22、33~35のように連続して現れることもある
  3. 素数の平方数も半素数に含まれる
  4. 大きな数になると、一見素数に見える半素数も出てくる。
    • 2でも3でも5の倍数でもない数は特に

分数・小数

1、0.5、0.3333…、0.25、0.2、0.1666…、0.142857・・・、0.125、0.1111…、0.1
  1. 自然数の逆数。分子を1とする分数。
    • いわゆる1/n
    • 小学生が一度は電卓で計算する数。
    • 0.0909…、0.08333…、0.076923…と続き、0に収束する。
    • 有限小数に限ると0.0625(1/16)、0.05(1/20)、0.04(1/25)、0.03125(1/32)と続く。
0.5、0.6666…、0.75、0.8、0.8333…、0.857142…、0.875、0.8888…、0.9
  1. (n-1)/n
    • 1-1/nとも置き換えられる。
    • 0.9090…、0.9166…、0.923076・・・と続き、1に収束する。
      • 有限小数に限ると0.9375(15/16)、0.95(19/20)、0.96(24/25)、0.9675(31/30)と続く。
  2. のび太のような人が仲間外れにされる悪夢の数字。
    • 「残念だなーn-1個しかないんだよ。お前の分だけないや。」
    • またはじゃんけんで1人だけ負ける数。
    • ドラえもんファンの小学生が一度は電卓で計算する数。
1、(3/2)2、(4/3)3、(5/4)4、(6/5)5
  1. 自然対数の底e
    • (1+n/1)n((n+1)/nnとも表記できる)
      • nを大きくするほどe(≒2.71828)に収束する

その他

0、4、7、10、14、17、20
  1. 2n(2の累乗数)の桁が繰り上がる指数
    • 1の位が0・4・7のいずれかのときに繰り上がる。
      • ただし100まで。この次は103で桁が繰り上がり、ここから195までは1の位が0・3・7、196から298までは1の位が0・3・6で桁が繰り上がる。
        • 299から391までは1の位が3・6・9で繰り上がる。
  2. 10、20、30・・・(10の倍数)なら3桁ずつ繰り上がる
    • 英語圏でthousand→million→billion→trillion
  3. 14、27、40、40n+0、14、27で4桁ずつ繰り上がる
    • 万→億→兆→京
2、4、5、8、10、16、20、25、32、40、50
  1. 逆数(これらの数が分母の分数)が有限少数になる数
    • 64、80、100、125・・・と続く。
    • 素因数分解が2と5の累乗数だけの数が当てはまる。
  2. これには「○○数」というような名称がついてない
    • Wikipediaでも「逆数が有限小数になる数」と言ってる
1、4、10、20、35、56、84
  1. 三角錐数
    • 120、165、220・・・と続く。
    • 三角数の数列の和である。
  2. 公式:n(n+1)(n+2)/6
    • 一般項の公式を出すには二乗の和の公式なども使わなければならず非常に複雑。
    • 連続する2つの積の公式から出すこともある。
1、5、14、30、55、91
  1. 四角錐数
    • 自然数の二乗の和でもある。
    • 140、204、285・・・と続く。
  2. 公式:n(n+1)(2n+1)/6
    • この公式を出すには二項式の三乗の差とかを使わなければいけない。
    • 三角錐数の公式とどっちが先に出せるかは違ってくる。
1、2、6、24、120
  1. 階乗。左から1!、2!、3!、4!、5!。
    • 720、5040、40320・・・と続く。
1、121、12321、1234321、123454321
  1. それぞれ12、112、1112、11112、111112
    • 1が並んだ数の回文数になる。
      • 1111111112は12345678987654321になる。
      • ただし11111111112は繰り上がりが発生し1234567900987654321となってしまう。
        • だが一応123456789 [10] 987654321は成り立つ。
    • このホームページが参考。
0、1、1、2、3、5、8、13、21、34
  1. フィボナッチ数列
    • 直前の2つの項の和。
    • 55、89、144、233、377・・・と続く。
  2. マイナス側に拡張することができる。
  3. 一般式もある。
  4. ウサギはこれに従って増えるらしい。
  5. トリボナッチ等の変形例もある。
  6. 黄金比にも関係する。
  7. 自然界のあちこちに現れている。

スポーツ系

球技

0、15、30、40
  1. テニスのポイント。
13、49、89、99
  1. 広陵が全国高校野球選手権大会で準優勝した大会。
    • 西暦にすると1927、1967、2007、2017。
      • すべて西暦の1の位が7の年で、2007年までは40年周期だった。
      • 戦前以外大会数の1の位が9の大会(記念大会前年)。
  2. 佐賀北に逆転満塁ホームランを打たれたのが89。中村奨成がホームラン数新記録を達成したのが99。
  3. まだ夏の甲子園で優勝したことは一度もない。
  4. 選抜の優勝は3、63、75(西暦にすると1926、1991、2003)。
60、65、67、69
  1. PL学園が全国高校野球選手権大会で優勝した大会。
    • 西暦だと1978、1983、1985、1987。
      • 昭和にすると53、58、60、62。
  2. 選抜の優勝は53、54、59
    • 西暦にすると1981、1982、1987で1987年は春夏連覇。
  3. 高校野球界トップクラスの名門校の1つでありながら1978~1987年の10年間しか優勝してないのは意外。
73、90、94、96、100
  1. 大阪桐蔭が全国高校野球選手権大会で優勝した大会。
    • 西暦だと1991、2008、2012、2014、2018。
      • 平成にすると3、20、24、26、30。
  2. 一番最初の優勝だけワケあって時代が飛んでる。
  3. 選抜の優勝は84、89、90。
    • 西暦にすると2012、2017、2018で2012年と2018年は春夏連覇。
10、12、14、15、17、19、21、22、19、23、29、30、34、38、41、49
  1. 全国高校野球選手権大会の出場校の推移(記念大会を除く)
    • 40回記念大会は47校、45・50・55回記念大会は48校、80・90回記念大会は55校、100回記念大会は56校。
    • 60回記念大会から49校(各都道府県1校、東京と北海道は2校)になった。
  2. 2018年の100回記念大会は、1975年の57回大会以来43年ぶりに出場校の数が偶数になったことが話題になった。
13、16、24、32、48
  1. FIFAワールドカップ出場国の推移
    • 2022年までは32ヶ国。2026年から48ヶ国になることが決定。

格闘技

48、52、57、63、70、78
  1. 女子柔道の階級。
    • 最重量級は78kg超級。
  2. ちなみに+4、+5、+6、+7、+8と間隔が1kgずつ増えていく。
    • つまり階差数列でもある。
    • 式にするとan=(n2+5n+90)/2
60、66、73、81、90、100
  1. 男子柔道の階級。
    • 最重量級は100kg超級。
    • こちらも+6、+7、+8、+9、+10と間隔が1kgずつ増えていく。
      • 式にするとan=(n2+9n+110)/2
48、53、58、63、69、75
  1. オリンピックにおける女子レスリングの階級(2016年リオ五輪から)。
    • 2004年アテネから2012年ロンドンまでは48、55、63、72のわずか4階級だった。
    • 2020年東京五輪では最軽量級が50になる模様。
  2. 世界選手権では階級が増える。
    • 2018年は50、53、55、57、59、62、65、68、72、76の10階級になってる。
  3. 柔道と違って超級がなく上限がある。
57、65、74、86、97、125
  1. オリンピックにおける男子レスリングフリースタイルの階級(2016年リオ五輪から)。
    • 2012年ロンドンまでは55、60、66、74、84、96、120。
      • 7階級あったが女子とは逆に階級が1つ減ってしまった。
  2. こちらも世界選手権でのみ実施される階級もある。
60、67、77、87、97、130
  1. オリンピックにおける男子レスリンググレコローマンの階級(2016年リオ五輪から)。

その他

49、55、59、64、76、87
61、67、73、81、96、109
  1. オリンピックにおけるウェイトリフティングの階級。上が女子、下が男子。
    • 超級もあるので7階級。
    • 格闘技でもないのに体重別階級があって、しかもレスリングより階級が多い。
  2. 上記は東京五輪の階級。リオ五輪までは女子が「48、53、58、63、69、75」、男子が「56、62、69、77、85、94、105」でプラス超級。
    • 男子は8階級で柔道より多かった。
  3. ロンドン五輪とリオ五輪で日本がメダルを獲得したのは女子最軽量級のみ。
1940、1964、1972、1998、2020
  1. オリンピック日本開催の年
    • ただし1940は第二次世界大戦で中止に
    • 1998だけ4の倍数ではないのは冬季・開催期移行後であるため
      • 1972年はまだ夏季と同じ年に開催されていた

輸送・交通系

鉄道関係

0、100、300、500、700
  1. 東海道新幹線
    • 700を最後に打ち止めとなり、その後の新車はN700、N700Aと700番台を使いまわしている。
    • 東北新幹線は200、400、600(→E1に変更)。九州新幹線は800。
209、231、233
  1. JR東日本の走ルンです。
209、217、501
  1. JR東日本209系シリーズ
    • 501系だけ外見は同じだが音が違う(かつては歌う車両)。
1000、2000、9000
  1. 東急の赤帯オールステンレス・VVVFインバータ制御の似た外見の車両群(通称9000系シリーズ)。
    • ちなみに9000系が最初に登場。その次が1000系、2000系。
    • 外見は東急ナンバー1なのに8000系シリーズと5000系シリーズの間の谷間世代、不遇な扱い。
  2. 真ん中は形式消滅しました。
1000、1200、1500、2000、2600、2700、5000、6000、7000、7200、8000、8600
  1. JR四国の車両。
    • 前半が汽車で後半が電車。
    • このうち2000はNがつくものがある。

自動車関係

98、100、101.65、108、110、112、114.3、115、120、120.65、127
  1. PCD
  2. 基本的にはミリだが、小数点以下の端数があるものはインチに由来する。
    • 98は主としてイタリア車。
    • 100は多くの国産車。
    • 101.65は旧mini。
      • 4インチのこととさているが真の4インチは101.6ミリなので少し違う。
    • 108はフランス車、スウェーデン車、一部のイタリア車。
      • 正確には107.95(4.25インチ)。
    • 110は低年式ダイハツ車、オペル車等。
    • 112はベンツ、VW等。
    • 114.3は多くの国産車。
      • 4.5インチ。
    • 115はGM車。
    • 120はBMW車、一部のレクサス車。
    • 120.65は一部の米国車、英国車。
      • 4.75インチ。
    • 127はジープ。

周波数系

周波数の数字をクリックすると、その周波数を使用している放送局のページにジャンプします。

5675946126667298919631071
  1. NHK第一の拠点局の周波数。
    • 夜間にこれらの周波数に合わせると各地の情報が聞ける。
      • ただ四国は963より990が、東北は891より1503のほうがよく聞こえる。
      • おすすめは18時50分からのローカル枠。
531540576585603621648675756、792、819837、846、927945963、981、999、1026、1161、1188122412961323、1341、1368、1503、1584
  1. 拠点局以外で上記や下記に掲載されていないNHK第一の基本周波数。
693、702、747、774、828、873、1017、1035、1089、1125、1152、1359、1377、1386、1467、1476、1512、1521、1539、1593、1602
  1. NHK第二の基本周波数。
    • 639と909は?
594、693、810、954113412421422
  1. 首都圏におけるAMラジオの周波数。
    • 11971530も入れて。
      • 76510981116も。これだと関東甲信越になっちゃう。
558、666、828、10081143117913141431
  1. 近畿地方におけるAMラジオの周波数。
    • 9451269も入れてくれ。
      • 1215や1395も。近畿では聞けないんだよぉ。
729、909、105313321431
  1. 中京圏におけるAMラジオの周波数。
612、1017、12781413
  1. 福岡市におけるAMラジオの周波数。
567、747、12871440
  1. 北海道札幌市におけるAMラジオの周波数。
603、1035、1368、138614491494
  1. 岡高地域におけるAMラジオの周波数。
549738864、1125
  1. 沖縄県におけるAMラジオの周波数。
540、720、900、990、12601350、1440、1530
  1. 1978年の間隔変更時に変更されなかった周波数。
558、738765864、900、918、1053、1098、1134
  1. 韓国や北朝鮮が大出力で放送されているため地元でも混信する周波数(民放限定)。
62110441170
  1. 夜間に日本語でその国のことがわかる周波数。
    • 1566(済州島)も忘れないで。
78.078.679.580.080.781.381.982.584.785.189.7、90.5、91.6、93.0
  1. 首都圏におけるFMラジオの周波数。
    • 最後3つはFM補完波。
76.580.282.885.186.5、88.1、89.489.9、90.6、91.1、91.9、93.3、94.9
  1. 京阪神におけるFMラジオの周波数。
    • 最後5つはFM補完波。
77.878.979.580.080.781.8、82.5、83.6、90.4、92.9、93.7
  1. 中京圏におけるFMラジオの周波数。
    • 最後3つはFM補完波。

関連項目


スポンサーリンク


関連記事
スポンサーリンク